Project

Do some or all of the following.

- Prove the 4 theorems on the last slide of my second lecture.
- **2** A standard torus in \mathbb{R}^3 is any torus in the family of surfaces of revolution obtained by revolving the profile curves

$$\gamma(u) = \left(a + b\cos{\frac{u}{b}}, 0, b\sin{\frac{u}{b}}\right), \ a \ge b, \ u \in [0, 2\pi),$$

about the z-axis (the vertical axis). For a standard torus \mathcal{T} :

- a) Find κ_1 , κ_2 , H, K_G .
- b) Compute the Willmore energy $W(a/b) = \int_{\mathcal{T}} H^2 dA$.
- c) The Willmore energy of a standard torus is W(z) is a function of the single variable z = a/b. Find z such that W(z) is a minimum. Standard tori with a/b given by this value are called Willmore tori.
- d) Find out what you can about the Willmore conjecture. Has the conjecture been proved for general tori? Is there a version for other surfaces?