Project

Do some or all of the following.
(1) Prove the 4 theorems on the last slide of my second lecture.
(2) A standard torus in \mathbb{R}^{3} is any torus in the family of surfaces of revolution obtained by revolving the profile curves

$$
\gamma(u)=\left(a+b \cos \frac{u}{b}, 0, b \sin \frac{u}{b}\right), a \geq b, u \in[0,2 \pi)
$$

about the z-axis (the vertical axis). For a standard torus \mathcal{T} :
a) Find $\kappa_{1}, \kappa_{2}, H, K_{G}$.
b) Compute the Willmore energy $W(a / b)=\int_{\mathcal{T}} H^{2} d A$.
c) The Willmore energy of a standard torus is $W(z)$ is a function of the single variable $z=a / b$. Find z such that $W(z)$ is a minimum. Standard tori with a / b given by this value are called Willmore tori.
d) Find out what you can about the Willmore conjecture. Has the conjecture been proved for general tori? Is there a version for other surfaces?

